Thursday 12:00-13:30, June 13, 2024

This exam contains 6 pages (including this cover page) and 3 questions. The total number of possible points is 35 + 10 extra credit points.

- This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.
- If a question seems ambiguous or confusing, please ask me to clarify it. Unless a problem states otherwise, you must **show your work**. There are blank worksheets at the end of the test if you need more room for this.
- It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.
- For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever possible, **simplify**.

Do not write in the table below. Good luck. $\textcircled{\odot}$

Student Name (print):

Question	Points	Score
1	10	
2	10	
3	15	
Total:	35	

1. (10 points) **<u>Transformation</u>**

Suppose a <u>continuous</u> random variable Y has the following pdf:

$$f(y) = Ce^{-y^2} 1(y > 0), \text{ for } y \in \mathbb{R}.$$
(1)

(a) (5 pts) Determine the constant C in the pdf of Equation (1).

(b) (5 pts) Let X = (2Z - 1)Y where $Z \sim Ber(0.5)$ and $Z \perp Y$. Find the CDF of X.

(c) (5 extra credit pts) Suppose $Y_1, Y_2, ..., Y_n \stackrel{iid}{\sim} f$. Define $Y_{(n)} = \max\{Y_1, ..., Y_n\}$. Find the pdf of $Y_{(n)}$. (If you cannot find C in (a), you can write your answers with the undetermined C.)

Page 3 of 6

2. (10 points) <u>Conditional Expectation</u> Suppose X ~ N(μ, 1), and Y|X = x ~ N(x, σ²), where μ and σ² are two constants.
(a) (5 pts) Find E[XY].

(b) (5 pts) Find $f_{X|Y}(x|y)$ and E[X|Y].

(c) (5 extra credit pts) Find $E[e^X|Y]$.

3. (15 points) Convergence of Random Variables

Suppose $Z_1, Z_2, ..., Z_n \stackrel{iid}{\sim} Unif(-1, 1).$

(a) (5 pts) Find the mean and the variance of the sample mean $\frac{1}{n} \sum_{i=1}^{n} Z_i$.

(b) (5 pts) Find the limit of $\frac{1}{n} \sum_{i=1}^{n} Z_i^2$ as $n \to \infty$. (To earn full credits, you should specify the mode of convergence.)

(c) (5 pts) Suppose $X \sim Bin(100, \pi)$, where π is a constant. Apply the central limit theorem to approximate the probability

$$P(48 \le X \le 52).$$

(Hint: your answer should be a function of π .)

Blank worksheet

Name	Notation	pdf/pmf	Range	Mean	Variance
Beta	Beta(a, b)	$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$	$x \in (0, 1)$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
Bernoulli	Ber(p)	$f(x) = p^x (1-p)^{1-x}$	$x \in \{0,1\}$	p	p(1-p)
Binomial	Bin(n,p)	$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$	$x\in\{0,1,,n\}$	np	np(1-p)
Exponential	$Exp(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$
Gamma	Ga(a,b)	$f(x) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx}$	$x \in \mathbb{R}_+$	a/b	a/b^2
Normal	$N(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$x \in \mathbb{R}$	μ	σ^2
Poisson	$Pois(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x\in\{0,1,\ldots\}$	λ	λ
Uniform	Unif(a, b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	(a+b)/2	$(b-a)^2/12$

Common distributions