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Introduction

The Normal Distribution is one of the most fundamental probability distributions, widely
used in statistics, natural sciences, and engineering. It models continuous data where values
cluster around a central mean, following a symmetric bell-shaped curve.

Probability Density Function (PDF)

A random variable X follows a normal distribution with mean µ and variance σ2 if its
probability density function (PDF) is:

fX(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, x ∈ R.

Key properties:

• Symmetric around µ.

• Unimodal, meaning it has a single peak at µ.

• The spread of the distribution is determined by σ2.

• The standard normal distribution is a special case with µ = 0 and σ2 = 1.

—

1. Properties and Operations for Normal Probabilities

Symmetry

For any normal variable X ∼ N (µ, σ2):

X ≤ µ− a = X ≥ µ+ a.
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Complement Rule

X ≥ x = 1−X ≤ x.

Probability Between Two Values

a ≤ X ≤ b = X ≤ b−X ≤ a.

Standardization

A normal variable X ∼ N (µ, σ2) can be transformed into a standard normal variable Z ∼
N (0, 1) using:

Z =
X − µ

σ
.

—

2. Linear Transformations of a Normal Distribution

If X ∼ N (µ, σ2), and we define a new variable:

Y = aX + b,

where a ̸= 0, then Y follows:
Y ∼ N (aµ+ b, a2σ2).

Key Result: Linear Transformations

If X ∼ N (µ, σ2), then Y = aX + b is also normally distributed with:

Y ∼ N (aµ+ b, a2σ2).

—

3. Linear Combination of Independent Normals

If X1, X2, . . . , Xn are independent normal variables, where Xi ∼ N (µi, σ
2
i ), and we define:

Y =
n∑

i=1

aiXi,

then Y follows:

Y ∼ N

(
n∑

i=1

aiµi,

n∑
i=1

a2iσ
2
i

)
.

—
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4. Sample Mean Distribution

If X1, X2, . . . , Xn are i.i.d. random variables:

Xi ∼ N (µ, σ2),

then the sample mean is defined as:

X̄n =
1

n

n∑
i=1

Xi.

Since the Xi’s are normal, the sample mean X̄n follows:

X̄n ∼ N
(
µ,

σ2

n

)
.

—

5. Determining Minimum Sample Size

We determine the minimum sample size n such that:

P (|X̄n − µ| ≤ E) ≥ p.

Solution Steps

1. Rewrite the event:
P (|X̄n − µ| ≤ E) = 2Φ(z)− 1,

where:

z =
E
√
n

σ
.

2. Solve for n:

n =
(zpσ

E

)2
.

Key Formula: Minimum Sample Size

n =
(zpσ

E

)2
, where zp = Φ−1

(
p+ 1

2

)
.
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