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Introduction

The Poisson process is a fundamental model used to describe the arrival of events occurring
randomly over time. A classic application is modeling web server traffic, where requests from
users arrive unpredictably.

Two equivalent ways to describe a Poisson process are:

1. Counting Process Perspective: Tracks the total number of arrivals over a given
time period.

2. Interarrival Time Perspective: Focuses on the random time intervals between
consecutive arrivals.

Both perspectives lead to useful insights. We explore this through an example of web
server requests later in this document.

Figure 1: Illustration of a Poisson Process. Notice in here there are four arrivals up to time
five, and three waiting times between arrivals.

Formal Definition of a Poisson Process

A stochastic process {N(t)}t≥0 is a Poisson process with rate λ > 0 if it satisfies:

1. Initial Condition: N(0) = 0, meaning no requests have arrived at t = 0.

2. Independent Increments: The number of arrivals in non-overlapping time intervals
are independent.
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3. Poisson-Distributed Increments: The number of arrivals in a time interval (s, t]
follows a Poisson distribution:

P (N(t)−N(s) = k) =
(λ(t− s))ke−λ(t−s)

k!
, k = 0, 1, 2, . . .

Characterization via Exponential Interarrival Times

An alternative but equivalent way to define a Poisson process is through the interarrival
times—the time intervals between consecutive arrivals. Instead of focusing on how many
events occur in a given time interval, we shift our perspective to analyzing the waiting time
until the next arrival.

Definition of Interarrival Times

Let T1, T2, . . . represent the time intervals between successive arrivals in the Poisson process.
That is, if the first event occurs at time S1, the second at S2, and so on, then the interarrival
times are given by:

T1 = S1, T2 = S2 − S1, T3 = S3 − S2, . . .

where Sn represents the arrival time of the nth event.
A fundamental result states that these interarrival times are independent and follow an

exponential distribution with rate λ, denoted as:

Ti ∼ Exp(λ).

This means the probability that the time until the next arrival exceeds t is:

P (Ti > t) = e−λt, t ≥ 0.

Memoryless Property and Its Consequences

The exponential distribution exhibits the important memoryless property, which states
that:

P (T > t+ s | T > s) = P (T > t).

This implies that if no request has arrived by time s, the remaining waiting time until the
next arrival is still exponentially distributed with the same parameter λ. In other words, the
process ”forgets” how long it has already waited, making it a natural model for scenarios
where arrivals occur randomly and independently over time.

Equivalence Between the Two Definitions

The Poisson process can be equivalently characterized in two ways:
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• Poisson Counting Perspective: The number of arrivals in time t follows a Poisson
distribution:

P (N(t) = k) =
(λt)ke−λt

k!
, k = 0, 1, 2, . . .

• Exponential Interarrival Time Perspective: The waiting times between consec-
utive arrivals are i.i.d. exponential random variables:

Ti ∼ Exp(λ).

Equivalence

• If the number of arrivals in time t follows a Poisson distribution, then the time
between consecutive arrivals must be exponentially distributed.

• Conversely, if interarrival times are i.i.d. exponential, then the total number of
arrivals up to time t follows a Poisson distribution.

Why is This Useful in Practice?

The dual characterization of the Poisson process is powerful because it allows flexibility in
modeling:

• The counting perspective is useful for analyzing how many events occur in a fixed
period, e.g., estimating web server loads over time.

• The interarrival perspective helps in understanding the timing between events, e.g.,
optimizing server response times.

Example: Web Server Requests

Suppose a web server receives requests at an average rate of λ = 12 requests per second.

1. Counting Process Perspective

We can determine the probability of receiving exactly 10 requests in a given second:

P (N(1) = 10) =
(12)10e−12

10!
≈ 0.104.

This tells us how likely it is that exactly 10 users access the server within a second.

2. Interarrival Time Perspective

We can also determine the probability that the next request arrives after 0.2 seconds:

P (T1 > 0.2) = e−12×0.2 = e−2.4 ≈ 0.091.

This shows that a long wait between requests is rare due to the high arrival rate.
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Preventing Server Overload

Suppose our web server has a maximum capacity of 1000 requests per minute. This means
we are interested in calculating:

P (N(1 min) ≥ 1000)

Alternatively, we could use the interarrival time formulation. Since a total of 1000 re-
quests means summing 1000 independent interarrival times, we check:

P

(
1000∑
i=1

Ti ≥ 1 min

)
.

If the sum exceeds 1 minute, the server remains stable; otherwise, it overloads.
Notice in both cases, I’m trying to answer the same question: What is the likelihood

of my server being overload?

Other Common Applications of Poisson Processes

The Poisson process is widely used in various domains to model random events occurring
over time. Some notable applications include:

• Hospital Emergency Room Arrivals: Patient arrivals in an emergency room can
be modeled as a Poisson process, allowing for effective resource allocation based on
varying arrival rates throughout the day.

• Call Center Requests: Incoming customer calls in a call center often follow a Poisson
process, helping managers optimize staffing schedules to handle peak periods efficiently.

• Radioactive Decay: The emission of particles from a radioactive substance occurs
randomly over time and is well-described by a Poisson process (used for radiation
detection).

• Astronomy and Astrophysics: The detection of photons or cosmic rays arriving at
a telescope follows a Poisson process used for signal processing in deep-space observa-
tions.

• Traffic Flow Analysis: Vehicles arriving at a toll booth or crossing an intersection at
random intervals can be studied using Poisson models to optimize urban transportation
planning.
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