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Introduction to Hyperparameter Search

Machine learning models often have internal settings, known as hyperparameters, which
significantly affect their performance. These hyperparameters, such as the learning rate
(how quickly the model updates itself during training) or the latent space size (how com-
pressed the model’s internal representation of data is), are not learned from the data but
must be set by the researcher.

One type of model that relies heavily on hyperparameter tuning is the autoencoder.
An autoencoder is a neural network designed to learn compressed representations of data
by encoding input into a smaller, latent space and then reconstructing it. This is especially
useful in fields like medicine, where autoencoders can identify patterns in complex data, such
as brain activity or genetic expressions, while preserving key information.

Tuning hyperparameters for autoencoders is crucial for balancing compression and re-
construction accuracy. Traditional methods like Grid Search and Random Search can
help, but they are either exhaustive and slow or inefficient and unguided.

Why Bayesian Search?

Bayesian Search provides a smarter, probabilistic approach to hyperparameter tuning.
It leverages the Bayes Rule to incorporate knowledge from previous trials, prioritizing
promising hyperparameter combinations while avoiding less likely candidates. This not only
speeds up the search but also helps find better solutions in complex, high-dimensional spaces.

We can think of the ayes Rule in terms of Prior and Posterior belief updates:

P (A | B) =
P (B | A)P (A)

P (B)
,

where:

• P (A): Prior probability (initial belief about A).

• P (B | A): Likelihood of observing B given A is true.

• P (B): Total probability of observing B.

• P (A | B): Posterior probability (updated belief about A after observing B).
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Steps in Bayesian Search

The following steps describe how Bayesian Search applies the Bayes Rule to hyperparameter
tuning:

1. Define the Search Space

First, we define the search space, which consists of all possible hyperparameter combina-
tions to explore (e.g., learning rates, layer sizes). Each combination represents a potential
candidate for achieving the best model performance. This search space forms the foundation
for the Bayesian search process.

2. Assign Prior Probabilities

Next, we assign initial probabilities, P (hyperparameters), to each combination. These prob-
abilities represent our initial belief about how likely each combination is to perform well.
If no prior knowledge is available, we can assign equal probabilities to all combinations (a
uniform or Laplacian prior). This step ensures that every candidate starts with a fair chance.

3. Test Initial Combinations

We randomly sample a few hyperparameter combinations from the search space and train the
autoencoder using these settings. The performance of the model under these combinations
provides the observed evidence (performance observed so far), which serves as the data
we condition on to refine our search.

4. Update Probabilities

Using Bayes’ Rule, we update our belief about how likely a new set of hyperparameters
will perform well. This update incorporates the information from the observed historical
performance of previously tested combinations:

P (hyperparameters | observed performance) =
P (observed performance | hyperparameters) · P (hyperparameters)

P (observed performance)
.

Here’s a breakdown of the components:

• Prior: P (hyperparameters) reflects our initial belief about the likelihood of each com-
bination.

• Likelihood: P (observed performance | hyperparameters) quantifies how well a spe-
cific combination explains the observed performance.

• Posterior: P (hyperparameters | observed performance) updates our belief about the
likelihood of each combination, conditioned on the performance data gathered so far.
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This updated posterior distribution helps us identify promising new hyperparameter can-
didates. The process ensures that each new evaluation leverages the information learned
from prior tests, focusing the search on areas of the search space that are more likely to yield
high-performing results.

5. Select Next Combination

Choose the next combination to test using an acquisition function, balancing:

• Exploration: Try under-tested combinations.

• Exploitation: Focus on high-posterior-probability combinations.

6. Iterate Until Convergence

Repeat testing and updating until the optimal combination is found or resources are ex-
hausted.

Comparison with Other Methods

Figure 1: Comparison of the three main search strategies
.
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Comparison of Search Methods

• Grid Search: Exhaustively tests all combinations. Computationally expensive
and inefficient for large spaces.

• Random Search: Samples combinations randomly. More efficient but lacks
direction.

• Bayesian Search: Uses probabilistic reasoning to focus on promising areas,
balancing exploration and exploitation.

Takeaways

• Bayesian Search uses the Bayes’ Rule to update probabilities of hyperparameter
success based on performance.

• It avoids the inefficiency of Grid Search and the randomness of Random Search.

• By focusing on high-probability regions, it finds optimal hyperparameters efficiently.

Example: Bayesian Search for Autoencoders in Medical

Imaging

Suppose we are training an autoencoder to compress and reconstruct MRI scans. The
goal is to identify optimal hyperparameters for accurate reconstruction. We’ll consider two
hyperparameters:

• Learning Rate (α): Controls how much the model adjusts during training.

• Latent Dimension Size (d): The size of the compressed representation.

Step 1: Define the Search Space

The possible values for the hyperparameters are:

α ∈ {0.001, 0.01, 0.1}, d ∈ {8, 16, 32}.

This creates a search space of 3× 3 = 9 combinations.

Step 2: Assign Prior Probabilities

We begin with no prior knowledge, assigning equal probabilities to each combination:

P (α, d) =
1

9
for all combinations.
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Step 3: Test Initial Combinations

Randomly sample two combinations from the search space, train the autoencoder, and eval-
uate performance using a reconstruction error metric (e.g., Mean Squared Error, MSE).
Suppose we test:

• (α = 0.01, d = 8) with an MSE of 0.15.

• (α = 0.1, d = 16) with an MSE of 0.20.

Step 4: Update Probabilities Using the Bayes Rule

To update the probabilities, we use the Bayes Rule :

P (α, d | performance) =
P (performance | α, d) · P (α, d)

P (performance)
.

Likelihood Calculation

The likelihood P (performance | α, d) reflects the probability of observing the given MSE for
each combination. Assigning a higher likelihood to combinations with lower errors:

P (performance | α, d) ∝ 1

MSE(α, d)
.

This proportionality simplifies the computation, as the denominator P (performance) acts as
a normalization factor, ensuring that all probabilities sum to 1.

Posterior Calculation

For (α = 0.01, d = 8):

P (α = 0.01, d = 8 | performance) ∝ 1

0.15
· 1
9
.

For (α = 0.1, d = 16):

P (α = 0.1, d = 16 | performance) ∝ 1

0.20
· 1
9
.

Normalize the results to compute the posterior probabilities. After normalization:

P (α = 0.01, d = 8 | performance) = 0.6, P (α = 0.1, d = 16 | performance) = 0.4.

Step 5: Select Next Combination

Using the posterior probabilities, prioritize testing combinations that are most likely to
perform well. For example, test (α = 0.01, d = 32), which has P (α, d) = 1

9
initially but is

promising based on similar tested combinations.
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Step 6: Iterate and Refine

Repeat the process: test new combinations, evaluate performance, and update probabili-
ties. Over iterations, the search narrows to the most promising combinations, balancing
exploration (trying diverse values) and exploitation (focusing on high-probability regions).

Advantages of Proportionality Notation

Proportionality notation (∝) simplifies Bayesian Search update by avoiding the explicit
calculation of P (performance). This term ensures probabilities sum to 1 but is not required
when comparing relative probabilities. For exact probabilities, divide each posterior by the
sum of all posteriors:

P (α, d | performance) =
P (performance | α, d) · P (α, d)∑

all combinations P (performance | α, d) · P (α, d)
.
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