STAT 131 — Discussion (Lec 12–14)

Prepared for students

University of California, Santa Cruz

Quick facts you'll use

- Variance algebra: $Var(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$, $Var(X \pm Y) = Var(X) + Var(Y) \pm 2 \text{ Cov}(X, Y)$.
- Covariance of independent r.v.'s: If $X \perp Y$, then Cov(X, Y) = 0.
- Order statistics for exponentials: For n i.i.d. $\text{Exp}(\lambda)$, the gap times between consecutive failures are independent exponentials with rates $n\lambda, (n-1)\lambda, \ldots$
- Moment generating function (mgf): $M_X(t) = \mathbb{E}[e^{tX}]$. If X, Y independent, $M_{aX+bY+c}(t) = e^{ct}M_X(at) M_Y(bt)$.
- Uniform mgf and moments: If $X \sim \text{Unif}(a, b)$,

$$M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)} \ (t \neq 0), \quad M_X(0) = 1, \quad \mathbb{E}[X] = \frac{a+b}{2}, \ \operatorname{Var}(X) = \frac{(b-a)^2}{12}.$$

Discussion [Lec 12]

1. Show $\mathbb{E}[(X-Y)^2] = \text{Var}(X) + \text{Var}(Y)$ when $X \perp Y$ and $\mathbb{E}[X] = \mathbb{E}[Y]$

Setup. Expand the square and take expectations:

$$\mathbb{E}[(X - Y)^2] = \mathbb{E}[X^2] - 2\mathbb{E}[XY] + \mathbb{E}[Y^2].$$

Independence gives $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$. Let $\mu := \mathbb{E}[X] = \mathbb{E}[Y]$. Then

$$\mathbb{E}[(X - Y)^2] = (\operatorname{Var}(X) + \mu^2) - 2\mu^2 + (\operatorname{Var}(Y) + \mu^2) = \operatorname{Var}(X) + \operatorname{Var}(Y).$$

Remark. Independence is stronger than needed; it suffices that Cov(X,Y) = 0.

2. n independent items with lifetimes $\text{Exp}(\lambda)$: expected time until 3 failures

Key fact. With n i.i.d. exponentials, the waiting time to the first failure is $\text{Exp}(n\lambda)$, then to the second is $\text{Exp}((n-1)\lambda)$, then to the third is $\text{Exp}((n-2)\lambda)$.

$$\mathbb{E}[T_{3 \text{ failures}}] = \frac{1}{n\lambda} + \frac{1}{(n-1)\lambda} + \frac{1}{(n-2)\lambda}.$$

$$\mathbb{E}[T] = \frac{1}{\lambda} \left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} \right).$$

Discussion [Lec 13]

1. Random word length from "the girl put on her beautiful red hat"

Words: the(3), girl(4), put(3), on(2), her(3), beautiful(9), red(3), hat(3). Thus $X \in \{2, 3, 4, 9\}$ with counts (1, 5, 1, 1) and equal word probability 1/8.

$$\mathbb{E}[X] = \frac{2+5\cdot 3+4+9}{8} = \frac{30}{8} = 3.75 = \boxed{\frac{15}{4}}.$$

Given $X \leq 4$, we restrict to lengths $\{2,3,4\}$ with counts (1,5,1):

$$\mathbb{E}[X \mid X \le 4] = \frac{2+5\cdot 3+4}{7} = \frac{21}{7} = \boxed{3}.$$

2. $\theta \sim \text{Unif}(0, 2\pi)$; $X = \cos \theta$, $Y = \sin \theta$

$$\mathbb{E}[X] = \mathbb{E}[\cos \theta] = 0, \quad \mathbb{E}[Y] = \mathbb{E}[\sin \theta] = 0,$$

$$\mathbb{E}[XY] = \mathbb{E}[\tfrac{1}{2}\sin(2\theta)] = 0 \ \Rightarrow \ \mathrm{Cov}(X,Y) = 0.$$

But $X^2 + Y^2 = 1$ a.s., a deterministic constraint, so X and Y are not independent.

$$\boxed{\operatorname{Cov}(X,Y) = 0 \text{ but } X \not\perp Y.}$$

Discussion [Lec 14]

1. MGF of Unif(a, b); use it to find mean and s.d.

MGF. For $X \sim \text{Unif}(a, b)$,

$$M_X(t) = \mathbb{E}[e^{tX}] = \frac{1}{b-a} \int_a^b e^{tx} dx = \frac{e^{tb} - e^{ta}}{t(b-a)} \quad (t \neq 0), \qquad M_X(0) = 1.$$

Mean via mgf. $M_X'(t) = \frac{\mathrm{d}}{\mathrm{d}t} M_X(t)$, so $\mathbb{E}[X] = M_X'(0)$. Differentiating and taking $t \to 0$ (e.g. by l'Hôpital) yields $\mathbb{E}[X] = \frac{a+b}{2}$.

$$\mathbb{E}[X] = \frac{a+b}{2}.$$

Variance via mgf. $\mathbb{E}[X^2] = M_X''(0)$; compute (or recall) $Var(X) = \frac{(b-a)^2}{12}$. Hence $sd(X) = \frac{b-a}{\sqrt{12}} = \frac{b-a}{2\sqrt{3}}$.

$$Var(X) = \frac{(b-a)^2}{12}, \quad sd(X) = \frac{b-a}{\sqrt{12}}.$$

2. If X, Y iid with mgf $\psi(t) = e^{t^2+3t}$, find mgf of Z = 2X - 3Y + 4By independence and linearity:

$$M_Z(t) = e^{4t} M_X(2t) M_Y(-3t) = e^{4t} \psi(2t) \psi(-3t) = e^{4t} e^{(2t)^2 + 3(2t)} e^{(-3t)^2 + 3(-3t)} = e^{13t^2 + t} dt$$

$$M_Z(t) = \exp(13t^2 + t).$$

Interpretation. Match to the Normal mgf $e^{\mu t + \frac{1}{2}\sigma^2 t^2}$: $\mu = 1$, $\sigma^2 = 26$. So $Z \sim \mathcal{N}(1, 26)$.