The Energy Score for Multivariate Normal Distributions
12 Feb 2025Introduction
The Energy Score serves as the multivariate extension of the Continuous Ranked Probability Score (CRPS), maintaining its desirable properties while handling vector-valued forecasts. This post presents the closed-form expression for multivariate normal distributions and its connection to classical CRPS results.
Energy Score: Definition
For a $d$-dimensional forecast distribution $P$ and observation vector $\mathbf{y} \in \mathbb{R}^d$:
\[\text{ES}(P, \mathbf{y}) = \mathbb{E}\left[\|\mathbf{X} - \mathbf{y}\|\right] - \frac{1}{2} \mathbb{E}\left[\|\mathbf{X} - \mathbf{X'}\|\right]\]where $\mathbf{X}, \mathbf{X’} \sim P$ are independent random vectors.
The Multivariate Normal Case
For $P = \mathcal{N}_d(\boldsymbol{\mu}, \mathbf{\Sigma})$ and observation $\mathbf{y}$:
\[\text{ES}(P, \mathbf{y}) = \sqrt{2\text{tr}(\mathbf{\Sigma})} \cdot \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \left[ {}_1F_1\left(-\frac{1}{2}; \frac{d}{2}; -\frac{\delta^2}{2}\right) - 1 \right]\]Components:
- $\delta^2 = (\boldsymbol{\mu} - \mathbf{y})^\top \mathbf{\Sigma}^{-1} (\boldsymbol{\mu} - \mathbf{y})$ (Mahalanobis distance squared)
- ${}_1F_1$: Confluent hypergeometric function
- $\Gamma$: Gamma function
Special Cases
Isotropic Covariance
When $\mathbf{\Sigma} = \sigma^2\mathbf{I}_d$:
\[\text{ES}(P, \mathbf{y}) = \sqrt{2d}\sigma \cdot \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \left[ {}_1F_1\left(-\frac{1}{2}; \frac{d}{2}; -\frac{\|\boldsymbol{\mu} - \mathbf{y}\|^2}{2\sigma^2}\right) - 1 \right]\]Univariate Case (Classical CRPS)
For $P = \mathcal{N}(\mu, \sigma^2)$ and observation $y$:
\[\text{CRPS}(P, y) = \sigma \left[ z(2\Phi(z) - 1) + \sqrt{\frac{2}{\pi}}(e^{-z^2/2} - 1) \right]\]where $z = \frac{y - \mu}{\sigma}$ and $\Phi$ is the standard normal CDF.
Computational Approaches
Component | Implementation Strategy |
---|---|
${}_1F_1$ function | scipy.special.hyp1f1 |
Gamma functions | Standard math libraries |
High-dimensional cases | Monte Carlo sampling |
Proof Sketch
Key Steps
- Non-central Chi Distribution: $|\mathbf{X}-\mathbf{y}|$ follows a non-central chi distribution
- Central Chi Moments: $\mathbb{E}[|\mathbf{X}-\mathbf{X’}|]$ uses central chi properties
- Hypergeometric Connection: Relate Bessel functions to ${}_1F_1$ through series expansions
Technical Lemma
For $\mathbf{V} \sim \mathcal{N}_d(\boldsymbol{\nu}, \mathbf{\Omega})$:
\[\mathbb{E}[\|\mathbf{V}\|] = \sqrt{2\text{tr}(\mathbf{\Omega})} \cdot \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \cdot {}_1F_1\left(-\frac{1}{2}; \frac{d}{2}; -\frac{\boldsymbol{\nu}^\top \mathbf{\Omega}^{-1} \boldsymbol{\nu}}{2}\right)\]Comments
The Energy Score’s extension of CRPS to multivariate settings addresses a critical need in modern probabilistic forecasting. Where the univariate CRPS revolutionized verification of scalar forecasts [1], complex systems increasingly demand joint calibration assessments of vector-valued predictions - from weather models (temperature-pressure-wind vectors) to financial risk (correlated asset returns).
While computation requires special functions (${}_1F_1$, Γ) or Monte Carlo methods, this cost reflects the intrinsic complexity of multivariate dependence structures. As shown in [3], alternative scores like the variogram score make different tradeoffs, but the Energy Score remains uniquely tied to the CRPS.
As multivariate probabilistic AI/ML systems proliferate, the Energy Score provides a principled verification framework - one that honors the CRPS’ “properness” philosophy.
References
- Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. JASA
- Székely, G. J., & Rizzo, M. L. (2013). Energy statistics: A class of statistics based on distances. JSPI
- Pinson, P., & Girard, R. (2012). Evaluating the quality of scenarios of short-term wind power generation. Applied Energy